
Individual aspects of quantum measurements

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 5899

(http://iopscience.iop.org/0305-4470/29/18/019)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 02:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 5899–5907. Printed in the UK

Individual aspects of quantum measurements

Paul Busch†§ and Pekka J Lahti‡‖
† Department of Applied Mathematics, The University of Hull, Hull, HU6 7RX, UK
‡ Department of Physics, University of Turku, FIN-20014 Turku, Finland

Received 11 June 1996

Abstract. The following two claims have been put forward in support of an individual
interpretation of quantum mechanics: within the framework of quantum measurement theory, (i)
the concept of measurement of a sharp observable can be completely characterized in terms of
the notion of calibration, and (ii) the frequency interpretation of probability (of a measurement
outcome) can be founded on the notion of a property of an individual system. Here we set out
to generalize these results to measurement schemes which may be unitary or non-unitary and to
object and pointer observables which may be sharp or unsharp.

1. Introduction

Quantum mechanics has often been classified as amerely statistical ensemble theory, with
not much bearings on the individual members of the ensembles. Yet there is an increasing
variety of experiments exhibiting individual quantum processes which were conceived,
devised and explained on the basis of this very theory. Therefore, in order to reach a
proper appreciation of the scope of quantum mechanics, it is necessary to spell out the
senses in which the theory does or does not apply to individual systems. In this paper we
work out two special aspects of the quantum theory of measurement which are essential for
an interpretation of quantum mechanics that refers to individual systems and their properties.
We demonstrate the following:

(i) the theory of measurement forsharp observables can be based solely on the calibration
condition;
(ii) a single measurement on a finite ensemble of identically prepared objects will most likely
produce a sequence of outcomes with relative frequencies that are close to the quantum
mechanical probabilities.

The first result gives a conceptually simple basis for the theory of measurements of sharp
observables. The second result shows that the quantum mechanical probabilities emerge as
definite properties—namely the relative frequencies of the pointer values—of an individual
system consisting of a collection of measurement apparatus after a measurement. The
ensemble is regarded here as an individual system, and the frequencies correspond to
properties of that system.

The above results are already known to hold in various special cases. Here it is shown
that they are valid in the most general context of quantum measurement theory, including
unitary or non-unitary couplings, repeatable or non-ideal measurements, as well as sharp or
unsharp object and pointer observables.
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2. Measurement scheme for an observable

Let E be an observable of the object systemS. Here we follow the formulation of quantum
mechanics in which observables and states are represented as dual pairs of normalized
positive operator valued measures and positive trace one operators acting on a complex
separable Hilbert spaceH. Let � be a set andF a σ -algebra of subsets of�, and
let L(H) denote the set of bounded oparators onH. We recall thatE : F → L(H) is a
normalized positive operator valued measure if (i)E(�) = I (normalization), (ii)E(X) > O

(positivity), and (iii)E(∪Xi) = ∑
E(Xi) for all disjoint sequences(Xi) ⊂ F (σ -additivity)

(where the sum converges in the weak operator topology ofL(H)). If, in addition,
E(X)2 = E(X) for all X ∈ F , then E is a projection operator valued measure. An
observable is asharp observableif it is represented by a projection operator valued measure.
A particular case of sharp observables are those given by self-adjoint operators which are
in one-to-one onto correspondence with the projection operator valued measures defined
on the Borel subsets of the real lineR. A stateT is a positive trace one operator on
H. A particular class of states are thevector states(one-dimensional projection operators)
T = P [ϕ] generated by the unit vectorsϕ ∈ H; P [ϕ]ψ := 〈ϕ |ψ 〉ϕ, ψ ∈ H. Any
observableE and stateT determines a probability measurepET : X 7→ pET (X) := tr T E(X)
for which the minimal interpretation is adopted: the numberpET (X) is the probability that
a measurement of the observableE on the system in the stateT leads to a result in the
setX. Further details of this formulation of quantum mechanics are given, for instance,
in [?]. E assigns a probability measurepET : X 7→ pET (X) := tr T E(X) to any stateT
of the system. On the minimal interpretation, the numberpET (X) is the probability that a
measurement ofE on S in the stateT leads to a result (in the set)X. The intuitive starting
point of the theory of measurement of an observable is the identification of the assumption
that a measurement leads to a result with the assumption that the pointer observable has
a corresponding value after the measurement. In that view the probabilitypET (X) should
equal the probability that the pointer observable will have a corresponding value after the
measurement. However, apart from the trivial case ofpET (X) being one (or zero) it is a most
delicate issue in quantum mechanics, known as the measurement problem, to explain that
an observable, such as the pointer, does have a value with some probability†. Therefore,
it would be desirable to formulate the concept of measurement without any reference to
this problematic requirement. This can be achieved for an important class of observables,
the sharp ones. To show this we introduce first the notion of a measurement scheme. For
further motivation and details of the formulation of a quantum measurement process the
reader may wish to consult [?].

A measurement schemeM := 〈HA, TA, PA, V 〉 for the object systemS consists of

• a measuring apparatusA, with a Hilbert spaceHA,
• an initial stateTA of A,
• a pointer observablePA of A, and
• a measurement couplingV , given as a linear state transformation of the object–apparatus

systemS + A.

Formally, a measurement schemeM determines an observableEM of the object system
S such that the measurement outcome probabilities for this observable are recovered from
those of the pointer observable after the measurement: for any (initial) stateT of S and for
any setX (of values of the pointer)

p
EM
T (X) = p

PA
RA(V (T⊗TA))(X) (1)

† We takepET (X) = 1 to ensure thatE has adefinitevalueX in the stateT .
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whereRA(V (T⊗TA)) is the (reduced) state of the apparatus after the measurement, obtained
by tracing out the object degrees of freedom from the final object–apparatus stateV (T⊗TA).
We then say that a measurement schemeM for S is a measurementof an observableE if
EM = E, that is, ifM satisfies theprobability reproducibility conditionwith respect toE:

pET (X) = p
PA
RA(V (T⊗TA))(X) (2)

for all T ,X. This condition reflects the idea that a measurement should reproduce the
outcome probabilities for the measured observable in the final distribution of the pointer
values. It turns out that in the context of measurements of sharp observables the probability
reproducibility condition is a consequence of an apparently weaker condition that can be
imposed on a measurement schemeM—the calibration condition—whichprima facie is
free of problematic interpretational implications.

3. Calibration condition and probability reproducibility

A measurement schemeM for S is said to satisfy thecalibration conditionwith respect to
an observableE if for any T andX the following implication holds true:

if pET (X) = 1 H⇒ thenpPA
RA(V (T⊗TA))(X) = 1. (3)

Clearly, if M satisfies the probability reproducibility condition (2) with respect toE, then
it also satisfies the calibration condition (3) with respect to this observable. Our first result
shows that the converse is also true wheneverE is a sharp observable.

Theorem 1. A measurement schemeM for S satisfies the calibration condition with respect
to a sharp observableE if and only if it satisfies the probability reproducibility condition
with respect to this observable.

Proof. Assume that the measurement schemeM fulfills the calibration condition with
respect to a sharp observableE. Consider first a vector stateT = P [ϕ] of S. If
E(X)P [ϕ] = P [ϕ], then, by (3), equation (2) holds. On the other hand, ifE(X)P [ϕ] = O,
then, by (3), one also haspPA

RA(V (P [ϕ]⊗TA))(X) = 0. Assume next thatP [ϕ] is such that
0 6= pEP [ϕ](X) 6= 1. Using the identity

P [ϕ] = E(X)P [ϕ]E(X)+ E(X′)P [ϕ]E(X′)+ E(X)P [ϕ]E(X′)+ E(X′)P [ϕ]E(X)

and applying the calibration condition (3), one gets

p
I⊗PA
V (P [ϕ]⊗TA)(X) = pEP [ϕ](X)+ 2Re

{
tr I ⊗ PA(X)V (E(X)P [ϕ]E(X′)⊗ TA)

}
.

We show that the last term vanishes identically, so that the probability reproducibility
condition is obtained. To this end we writeTX := pEP [ϕ](X)

−1E(X)P [ϕ]E(X) and observe
that

1 = tr I ⊗ PA(X)V (TX ⊗ TA) = trV ∗(I ⊗ PA(X)
)
TX ⊗ TA

where we have introduced the dual mapV ∗ of V (see, e.g., [?]). Let TA = ∑
wiP [φi ] be

a vector state decomposition ofTA. It follows that for anyP [φi ] one also has

trV ∗(I ⊗ PA(X)
)
TX ⊗ P [φi ] = 1
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and therefore

V ∗(I ⊗ PA
(
X

))
E(X)⊗ P [φi ](ϕ ⊗ ψ) = E(X)⊗ P [φi ](ϕ ⊗ ψ)

for all ϕ ∈ HS , ψ ∈ HA. Thus

V ∗(I ⊗ PA
(
X

))
E(X)⊗ P [φi ] = E(X)⊗ P [φi ]

and

E(X′)⊗ P [φi ] V
∗(I ⊗ PA

(
X

))
E(X)⊗ P [φi ] = 0.

Taking the expectation with respect toϕ ⊗ φi yields

trV ∗(I ⊗ PA
(
X

))
E(X)P [ϕ]E(X′)⊗ P [φi ] = 0.

But this gives

tr I ⊗ PA
(
X

)
V (E(X)P [ϕ]E(X′)⊗ TA)

= trV ∗(I ⊗ PA
(
X

))
E(X)P [ϕ]E(X′)⊗ TA

=
∑

wi trV ∗(I ⊗ PA
(
X

))
E(X)P [ϕ]E(X′)⊗ P [φi ] = 0.

If T = ∑
tiP [ψi ], then one haspET (X) = ∑

tip
E
P [ψi ](X) =

∑
tip

PA
RA(V (P [ψi ]⊗TA))(X) =

p
PA
RA(V (T⊗TA))(X), which completes the proof. �

This result had already been obtained in [?] for a special class of unitary measurements
of discrete sharp observables, that is, for the measurement schemes in which the coupling
V is effected by a unitary mapU on HS ⊗ HA, the apparatusA is prepared in a vector
stateP [φ], the pointer observablePA is sharp, and the measured observableE is both sharp
and discrete. The generalization to arbitrary sharp observables and arbitrary initial states of
A was achieved by Herbut [?]. The present proof is more straightforward and exhaustive,
encompassing non-unitary measurements and possibly unsharp pointers as well. This is
physically desirable as theS + A dynamics will be non-unitary in realistic situations due
to interactions of the macroscopic parts ofA with its environment; also, it can be argued
that macroscopic pointer observables are essentially unsharp observables [?].

Theorem 1 shows that for sharp observables the theory of measurement can be based
on the simple notion of calibration: a measurement exhibits unequivocally what is the
case; that is, if the measured observable has a particular value before the measurement
(in the sense thatpET (X) = 1), then the pointer observable has the corresponding value
after the measurement (in the sense thatp

PA
RA(V (T⊗TA))(X) = 1). It may be helpful to

note that with this formulation we do not stipulate that an observable has a definite value
only when the system is in an eigenstate of that observable; but we do regard the latter
condition as sufficient for the former, cp the footnote on page 2. In this way the concept of
measurement can, for sharp observables, be reduced to the concept of calibration within the
frame of measurement theory. Furthermore, theorem 1 underlines the fundamental nature
and inevitability of the probability reproducibility condition, which was originally taken as
the defining criterion for the termmeasurement. This provides strong support for invoking
this condition also in the definition of measurements of unsharp observables (for which the
calibration condition, in general, is not sufficient for the whole probability reproducibility
condition). Finally, theorem 1 sharpens the measurement problem, that is, the problem
of justifying the interpretation of the measurement outcome probabilities for the measured
observable as the actualdistribution of the pointer values after the measurement. This
problem is now seen to arise already from the calibration condition in conjunction with the
assumption of a unitary measurement coupling [?]. In particular, the repeatability property
of a measurement, which is usually assumed in this context, isnot essential to establishing
the measurement problem.
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4. Emergence of outcome probabilities as relative frequencies

Next we work out an ensemble interpretation of the quantum mechanical probabilities for
arbitrary observables, whether sharp or unsharp. In formulating this interpretation, we
considern runs of the same measurement, performed onn identically prepared copies of
the object systemS, asone single physical processto be described by quantum mechanics.
Regarding this theory as universally valid and complete, one would expect it to be able
to predict that in a large system consisting ofn equally prepared systemsS the relative
frequency of any outcome after a measurement would be almost equal to the corresponding
quantum mechanical probability. This expectation will be confirmed in the form of
theorem 2. Technically we make use of similar theorems proved earlier by various authors
in the context of the many-worlds interpretation of quantum mechanics. Our approach has
various advantages. First, we admit arbitrary object observables and do not restrict ourselves
to repeatable measurements; hence, for example, genuinely unsharp measurements which
allow no reduction to, or approximation by, sharp measurements, are taken into account. A
realistic example of such genuinely unsharp measurements is furnished by quantum optical
schemes affording joint measurement of two conjugate quadrature components—hence phase
space measurements. See, e.g., [?]. Further examples and discussions can be found in [?].
Second, neither do we assume the pointer to be a sharp observable; finally, we will allow
for arbitrary (linear, but not necessarily unitary) measurement couplings.

Let S(n) be ann-body system consisting ofn identical copies ofS : S(n) = S1+. . .+Sn.
The associated Hilbert space is the tensor product Hilbert spaceH(n) = H1 ⊗ . . .⊗ Hn. A
measurement schemeM for S (= S1 = · · · = Sn) can be extended to a measurement scheme
M(n) for S(n) by forming then-fold tensor products of the constituents ofM. In order to
collect the statistics, one needs to fix a reading scaleR = (Xi)i∈I. A reading scaleis a
countable partition(Xi)i∈I ⊂ F of the value space� of the pointer observable. It serves to
discretize the readout space, discretizing in the first instance the pointer observable and thus
also the measured observable. The reading scaleR = (Xi)i∈I gives rise to a discretized
pointer observablePR

A : i 7→ Pi := PA(Xi), Xi ∈ R, and thus to a discretized measurement
schemeMR,(n) for S(n). A typical measurement outcome sequence of this scheme is
` ≡ (l1, . . . , ln), with lk ∈ I, k = 1, . . . , n. For anyXi ∈ R with pET (Xi) 6= 0, the final
component stateof A conditional on the occurrence of an outcomeXi is

pET (Xi)
−1P

1/2
i RA(V (T ⊗ TA))P

1/2
i =: TA(i, T ). (5)

(For pET (Xi) = 0, we putTA(i, T ) = O). Since the pointer observablePA is not assumed
to be a sharp observable one hasO 6 P 2

i 6 Pi 6 P
1/2
i 6 I and thus only the inequality

tr TA(i, T )Pi = pET (Xi)
−1 tr RA(V (T ⊗ TA))P 2

i 6 1. (6)

We assume from now on that the measurement schemeM fulfills the pointer value-
definiteness conditionwith respect to the reading scaleR (a fundamental theorem of the
quantum theory of measurement [?] assures that for each observableE there are unitary
measurements with sharp pointer observables; for such measurements the pointer value-
definiteness condition is automatically fulfilled (for a review, see the revised edition of [?])):
for eachXi ∈ R and anyT with pET (Xi) 6= 0

tr TA(i, T )Pi = 1. (7)
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In order that the statesTA(i, T ) can be interpreted as the conditional final states ofA, it is
necessary that the reduced stateRA(V (T ⊗TA)) ≡ TA(�, T ) can be expressed as a mixture
of these states; that is, one must stipulate thepointer mixture conditionfor A:

TA(�, T ) =
∑

tr TA(�, T )PiTA(i, T ). (8)

Condition (7) entails, in particular, that the operatorsPi have the eigenvalue 1 (though
they need not be projections). We denote the spectral projection ofPi associated with this
eigenvalue asP (1)i . Let P (n)` := P

(1)
l1

⊗ · · · ⊗ P
(1)
ln

, for all `. For eachi ∈ I one may define
a relative frequency operator[?]

F
(n)
i =

∑
`

f
(n)
i (`)P

(n)
` (9)

with the eigenvalues

f
(n)
i (`) = 1

n

n∑
j=1

δlj ,i . (10)

Let T (n)A (`, T ) := TA(l1, T )⊗ · · · ⊗ TA(ln, T ) be the final component state of the apparatus
A(n). The eigenvalue equation

F
(n)
i T

(n)

A (`, T ) = f
(n)
i (`)T

(n)

A (`, T ) (11)

shows that the relative frequency of the pointer valuei (orXi) corresponds to a real property
in the final component state of the apparatus, a property which is given by the eigenvalue
f
(n)
i (`) of the relative frequency operatorF (n)i . In accordance with the assumption that an

observablehas a particular value in a given state if this state assigns probability one to that
value (see the footnote on page 2), we say that a property isreal in a state if this state
assigns probability one to this property.

The statistical ensemble interpretationof probability (see, e.g., [?]), which is at issue
here, states that if one performed a large number ofE-measurements, with a fixed reading
scaleR, on systemsS equally prepared in stateT , then the relative frequency of the
outcomesi, would approach the probabilitypET (Xi). Hence probability is related again to
the situation after the measuring process, that is, to the final state ofA(n):

T
(n)

A (�, T ) := RA
(
V (T ⊗ TA)

) ⊗ · · · ⊗ RA
(
V (T ⊗ TA)

)
=

∑
`

p
(n)
` T

(n)

A (`, T ) (12)

where the last equality is a consequence of the pointer mixture condition (8) andp
(n)
` =

pl1 · · · · · pln , with pi = tr TA(�, T )Pi .
The expectation and variance of the frequency operatorF

(n)
i in the stateT (n)A (�, T ) are

found to be (the proof of these equations are in complete analogy to those of Hartle [?], as
well as those in [?, ?]; here we follow the adaptation worked out in [?])

Exp
(
F
(n)
i ; T (n)A (�, T )

) = tr
[
T
(n)

A (�, T ) F
(n)
i

]
= pi (13a)

Var
(
F
(n)
i ; T (n)A (�, T )

) = tr

[
T
(n)

A (�, T )
(
F
(n)
i − pi

)2
]

(13b)

=
∑
`

(
f
(n)
i (`)− pi

)2
p
(n)
` = 1

n
pi (1 − pi) .
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The expressions on the right-hand sides are verified by induction with respect ton. The
probabilitiespi are thus recovered, in the limit of largen, as relative frequencies of the
pointer valuesi. In other words, the uncertainty about the pointer value of the individual
apparatus system, when viewed from the point of view of the individual system, in the state
T
(n)

A (�, T ) of (13), consisting of many apparatus, is turned into a fairly ‘sharp’ distribution,
with weightsp(n)` , of sequences of frequencies of pointer values. This result can be rephrased
as a statement about a measurement performed on the object system as follows. LetE be the
observable determined by the measurement schemeM. The defining condition (1) implies
thatpi = pET (Xi). Similarly, the schemeM(n) qualifies as a measurement of the observable
E(n) = E ⊗ · · · ⊗ E of an ensembleS(n) of n systemsS in the stateT (n) = T ⊗ · · · ⊗ T .
Hence the object probabilitiespET (Xi) are themselves tied equally well to the frequency
values of the ensemble of apparatus.

Theorem 2. Let M be a measurement of an observableE such that the pointer value-
definiteness condition (7) is fulfilled with respect to a reading scaleR. For any stateT ,
and allXi ∈ R, one has

Exp
(
F
(n)
i ; T (n)A (�, T )

) = pET (Xi) (14a)

lim
n→∞ Var

(
F
(n)
i ; T (n)A (�, T )

) = 0. (14b)

According to this theorem the relative frequency of the pointer valuei after a meas-
urementMR,(n) on an ensemble ofn systemsS in the stateT (n) approaches the probability
pET (Xi) in the limit of largen.

It is important to recall that the approximation of the object probabilitiespi by relative
frequencies is itself a probabilistic statement involving probabilities about the large ensemble
of measuring apparatus. This is a reflection of the fact that the concept of probability cannot
be reduced to that of relative frequency. But what is essential to the individual interpretation
of quantum mechanics is the fact that on the ensemble level, viewed as an individual system,
one obtains statements involving probabilities close to unity, so that the corresponding
properties can be asserted almost with certainty. To see this more clearly, let us turn the
limit statement (14b) into the form known as Bernoulli’s theorem (see, e.g., [?]). We note
first that the eigenvaluesf (n)i (`) are degenerate since according to (10), for any permutation
π(`) of a sequencè one hasf (n)i

(
π(`)

) = f
(n)
i (`). Therefore the spectral projection of

F
(n)
i associated with an eigenvaluef (n)i (`) is

∑
π P

(n)

π(`) =: 5(n)
[`] . Here the summation runs

over all permutationsπ which do not permute identical elements of` among themselves;
and [̀ ] denotes the class of all sequences resulting from such permutations of a sequence
`. For a positive numberε we define

P (n)
ε :=

∑
[`]:|f (n)i (`)−pi |6ε

5
(n)
[`] . (15)

Condition (14b) then implies that

lim
n→∞ tr T (n)A (�, T )P (n)

ε = 1. (16)

This means that for any positiveε the probability for the frequency being close withinε to
the intended probabilitypi approaches one asn → ∞. In this sense the frequency, which is
closest topi , is the one that will most likely have been realized in the distribution of pointer
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positions of the ensemble at the end of the measurement. One may wonder whether a more
specific statement could be achieved, in the sense that for some of the spectral projections
5
(n)
[`] the expectation value would approach unity. However, one can show (for the case

of the outcome label setI being finite) that max̀
{

tr T (n)A (�, T )5
(n)
[`]

} → 0 as n → ∞
(as long as allpk 6= 1). Hence it cannot be maintained that in thefinite ensembles the
probabilitiespk would be approached by the corresponding frequencies in this somewhat
stronger sense. On the other hand, it has been shown recently that in the context ofinfinite
ensembles the probability may assume the status of a definite property. Indeed, Coleman and
Lesniewski [?] have constructed a ‘randomness operator’, based on the classical notion of
the randomness of a sequence of the numbers±1. This operator projects onto the subspace
of eigenstates of the frequency operator for a spin-1

2 observablesx , say, associated with
random sequences̀. Then they showed that the infinite products ofsz eigenstates belong
to that subspace. Using that result, Gutman [?] has constructed projections for an infinite
ensemble of spin-12 systems which represent probabilities for the individual members as real
properties in the sense of some frequencies for the ensemble. In this way the recovery of
probabilities from properties can be achieved without any problematic limiting procedures
if the notion of infinite ensembles is accepted.

5. Conclusion

In summary, we have presented two theorems underlining the possibilites of presenting a
foundation of quantum mechanics on concepts pertaining to individual systems rather than
statistical concepts. Theorem 1 ensures that in the case of sharp observables the concept
of measurement can be based solely on the calibration requirement; the linearity of the
measurement dynamics then entails the full probability reproducibility requirement. The
latter condition is therefore rightfully adopted as the appropriate generalization fixing the
term measurement for sharp as well as unsharp observables. This is very satisfying, taking
into account that for unsharp observables the calibration condition is not applicable.

Theorem 2 shows in which sense a measurement outcome probability emerges as a
property—the value of a frequency observable—of an ensemble of measuring apparatus
viewed as an individual system. Our result provides a thorough generalization of the
argument, covering unitary or non-unitary measurements as well as sharp and unsharp
object and pointer observables.
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